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Emission of resonance fluorescence by an atom near the surface of a four-wave mixing phase

conjugator is considered. The dipole radiation field, regarded as a Heisenberg-operator field, is

decomposed into plane waves with the aid of Weyl's representation of the Green's function for the wave

equation. Each plane-wave component which is incident on the surface of the nonlinear medium, is

reflected as its phase-conjugate image. Summation of all reflected plane waves then yields the phase-

conjugate replica of the incident dipole radiation. This field adds to the radiation which is emitted by the

atom into the direction away from the medium. The condition under which squeezing occurs in the

emitted resonance fluorescence is investigated.

I. INTRODUCTION

Squeezing in resonance fluorescence from a two-state atom was first considered by

Walls and Zoller. 1 They derived conditions on the optical parameters for which the

emitted radiation would exhibit squeezing, and it appeared that only for a very limited

range of the parameters squeezing could occur. On the other hand, squeezed states of the

free electromagnetic field can be generated through four-wave mixing as two-photon

coherent states. 2 In this paper we consider a combination of these two processes: a two-

state atom with transition frequency coo is close to the surface of a four-wave mixer in

the phase conjugation setup. The nonlinear transparent crystal is pumped by two

counterpropagating laser beams with frequency COp, as shown in Fig. 1. Then, an

incident plane wave with frequency co is reflected as a wave with frequency 2o3p- co,

and this wave counterpropagates the incident wave. This device will be referred to as a

phase conjugator (PC). When an atom in the neighborhood of this PC emits

fluorescence, then part of this radiation will be incident on the PC, and will be reflected

as its phase-conjugate replica. The total radiation field then is the sum of regular

fluorescence, which is emitted directly into the direction of the detector, and the phase-

conjugate image of the incident field. In addition, we shall assume that the atom is
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driven by a laser with frequency co L, and this field propagates parallel to the surface of

the crystal.
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Fig. 1. Geometry of a four-wave mixing phase conjugator.

II. DIPOLE RADIATION

An electric field E(_, t) has a Fourier transform, defined as

_(L_)- S-"-dt e i°x E(_,t) (1)

In terms of this transform, the positive-frequency part of E(i, t) is defined as

_(?,t) ¢+, ----_Sodcoe-i°x I_(L co) (2)

and the total field can then be written as

f!(?, t) = E(i, t) (+) + n.c. (3)
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Here,the field is a quantum operator field, and the t-dependence signifies the Heisenberg

picture.

For a (quantum) dipole _.(t), with Fourier transform _(to), which is located at

position h, the Fourier transform of its electric field is given by

4@Eo eikl?-hl ' (4)

with k = 0.) I c > 0. The subscript p indicates that this field is the particular solution for a

dipole in empty space. We shall assume that the plane z = 0 is the surface of the

medium, and that the atomic dipole position vector is given by h = h ez, h > 0. In order

to obtain the field reflected by the PC, we expand the dipole field into plane waves.

Then for each wave its phase-conjugate image is a counterpropagating wave, multiplied

by the appropriate Fresnel coefficient, and shifted in frequency according to the rule of

Fig. 1. The decomposition of the field Ep(Lto) is accomplished by using Weyrs

representation of the Green's function for the scalar wave equation:

e ikl_-_l i _* 1 eietx+iBy+i_,lz_hl

where Y is given by

(5)

(6)

It is understood that we take the form for which the argument of the square root is

positive. When we substitute (5) into (4) and carry out the V operations, then the result

is the desired expansion into plane waves. The polarization of the waves is determined

by the dipole operator, and this has to be decomposed into surface- and plane

polarization components. The details of this lengthy calculation can be found in Refs. 3

and 4. Furthermore, we have to make an asymptotic expansion in order to find the field

in the radiation zone. This was done with the method of stationary phase. 5

Subsequently, the inverse Fourier transform has to be calculated, to obtain the positive-

frequency part of the field. The final result for the radiation field, evaluated at the

position of a detector, located under an angle 0 with the normal to the surface, is

F.(_, t) (+) = °,)o 2 e-i_o x
4raZorC2 (1_ - _(_ • 1VI)} (7)
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Here, '¢ = (h/c)cos0, coo is the atomic transition frequency, and the Heisenberg operator

1Vl(t) is given by

1Vl(t) = _.(t) (+) - P* e -2imPt P.(t) (-) (8)

The positive-frequency part of the dipole operator is proportional to the atomic lowering

operator, and the negative-frequency part is proportional to the raising operator.

III. DRIVEN ATOM

Now assume that the atom is irradiated by a nearly-monochromatic laser beam, with

an electric field of the form

EL (t) = E o Re _L e--i(O_Lt'_(t)) (9)

The phase qb(t) is a random process, which accounts for the laser linewidth. We take the

phase to be the independent-increment process, leading to a Lorentzian laser lineshape

with a width equal to _,. This field couples to the atomic dipole as -_. • EL in the

Hamiltonian, giving rise to stimulated transitions between the two levels. The equation

of motion for the atomic density operator t_ in the rotating frame, and averaged over the

stochastic laser phase, can readily be solved. For the matrix elements we obtain:

2 2
1 _9 _+AP° (A2 +112) (10)

< elsie >= _ f_2rl + A(1 + po2)(A2+ tie ) ,

<elolg >= _lf_ A(A- irl)
_2 +A(l+P_o)('z_2+rl2 (II)2 fl.orl )

Here we introduced the notations:A = coL -coo ,rl= _,+A(l+Po 2) /2, and _o =1f_l,with

the (complex) Rabi frequency of the transition,A the Einstein coefficientfor

spontaneous decay,and Po the absolutevalue of the Frcsnelreflectioncoefficient.

IV. DEFINITION OF SQUEEZING

The electric field of the emitted radiation is given by Eq. (7). The slowly-varying

amplitude of the resonance fluorescence, with respect to the incident field, is given by 6

Ect(t) = E(t)(+)e i(t%t+*(t)-ct) + H. c. (12)
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with E(t)C+)the projectionof the field from Eq. (7) onto a fixed polarizationdirection.

Angle o_canbevaried in anexperiment. For oc= 0 or cx= _ / 2 this corresponds to the

in-phase and' out-of-phase quadrature component of the field, respectively. The

Heisenberg uncertainty relation for quadrature fields with different values of ot is

zSE a (t) AE_x,(t ) > 21< [Ea (t), Ea, (t)] >1 (13)

and with Eq. (12) this becomes

(AEa(t))2(AEcc(t))2 >_ < [E(t)(+),E(t)(-)] >2 sin2(ot_ or') (14)

Then we define the field Ea(t ) squeezed, if

(AEa(t)) 2 < 1< [E(t)(+),E(t) (-)] >1 , (15)

holds. From Eq. (14) it follows that when Ect(t) is squeezed for a certain value of c_,

then the quadrature component of the field which is 90 ° out of phase with this Ea(t)

must have enhanced fluctuations.

As a measure for the amount of squeezing we introduce the normalized quantity

(AEon) 2-1 < [E(t) (+) E(t) (-) ] >l
s = ' , (16)

<E 2 >

so that squeezing occurs under condition

s<0 (17)

V. CONDITION FOR SQUEEZING

The squeezing parameter s can readily be evaluated, given the solution for the atomic

density operator c_. It appears that parameter cz can be chosen, such that it minimizes s,

but this choice depends in a complicated way on the phase of the atomic transition dipole

moment, the phase of the Rabi frequency, and the normal distance between the atom and

the surface of the medium. 7 For this optimum value of or, parameter s is found to be

s=l- A(A2 +r12)

Po )[f_orl + A(1 + ,112)]2(1 + 2 2 p2)(A2 +
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x [_o2(A+ll- Po21_) + AI1- po41(A2+ T12)]
(18)

Therefore, squeezing occurs when the

holds:

following condition on the optical parameters

(1 + Po2)[_o211+ A(1 + Po2)(A2 + 112)12 <

< A(A2 + 112)[f22(A+ll _ po211])+ AI 1 _ po4[(A2 + rl2) ] (19)

If we set p2 = 0 in Eq. (19), then we recover the result for a free atom. 8 When we set

f22 = 0, which corresponds to the case without the driving laser, then it is easy to verify

that in this situation squeezing never occurs. Figure 2 shows the region were squeezing

occurs, as a function of the laser power and the phase-conjugate reflectivity, and for zero

detuning A and laser linewidth _,.
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Fig. 2. Squeezing occurs when the reflectivity and the laser power are such that the

corresponding point in this plane is within the loop.
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II. UNCERTAINTY RELATIONS

117




